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Abstract. We present, to the best of our knowledge, the first experimental demonstration by direct detec-
tion of the Bose-Einstein photon-number distribution of highly spatially multi-mode but temporally single
mode spontaneous parametric down-conversion.

PACS. 42.50.-p Quantum optics – 42.50.Ar Photon statistics and coherence theory – 42.65.-k Nonlinear
optics – 42.65.Lm Parametric down conversion and production of entangled photons

1 Introduction

Though it is well-known that the photon-number distribu-
tion of incoherent light obeys a Bose-Einstein, or thermal,
statistics, it is almost impossible to experimentally distin-
guish this statistics from a Poissonian distribution in the
optical domain for black body sources at usual tempera-
tures. Indeed, the variance of the number n of detected
photons (i.e. photo-electrons) reads as [1]:

(∆n)2 = n +
(
n2/M

)
(1)

where n is the mean number of detected photons and M ,
called the degeneracy factor, represents the number (at
least one) of spatio-temporal coherence cells, or modes,
contained in the detection volume (i.e. the detector area
times the detection duration times the light speed). The
first term of the right part of equation (1) represents the
Poissonian noise, due to the discrete nature of photons. It
is present even in absence of intensity fluctuations (case
of pure coherent light). The second term comes from the
intensity fluctuations of incoherent light. Note that equa-
tion (1) is valid for the photo-electrons (pe−) whatever the
quantum efficiency of the detector. However, dividing the
photo-electron results by the quantum efficiency in order
to retrieve the variance in photons is not allowed, because
the Poissonian term is not scale-invariant. For black body
radiation at usual temperature in the optical domain, the
mean number of photons per mode (n/M in Eq. (1)) is
far less than one and the Poissonian term dominates in
the variance. It can be shown [1] that in this case the
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Bose-Einstein and the Poissonian statistics are undistin-
guishable.

On the other hand, cavity-less optical amplification
of quantum noise provides incoherent light with many
photons per mode. Kravis and Allen [2] experimentally
demonstrated 25 years ago that spatial fluctuations of
amplified spontaneous emission do obey a Bose-Einstein
statistics. In the temporal domain, the same demonstra-
tion was made for stimulated Raman scattering [3] and,
more recently, for light issued from an erbium amplifier.
In the Wong et al. experiment [4], the degeneracy factor
was 15 while a very narrow Fabry-Perot filter was used in
the Pietralunga et al. experiment [5] in order to obtain a
degeneracy parameter as close of one as possible. In both
experiments, the fiber optical amplifier ensured a perfect
spatial coherence.

In this paper, we experimentally demonstrate by di-
rect detection for one temporal mode the thermal char-
acter of statistics of spatial fluctuations of spontaneous
down conversion (SPDC), or parametric amplification of
quantum noise. Vasilyev et al. [6] studied in the time do-
main the photon-number distribution of SPDC using a
self-homodyne technique of detection. In the spatial do-
main, spatial fluctuations of SPDC were experimentally
investigated by Berzanskis et al. [7] and our group [8] in
independent experiments using similar schemes. A semi-
quantitative theoretical explanation of these fluctuations
was given in [7] and we showed [9] that a semiclassical sim-
ulation allows the spatial features (size and shape) of these
experimental images to be retrieved. However, the exper-
imental contrast of these spatial fluctuations was lower
than that expected by estimating the degeneracy factor.
We now attribute this discrepancy to the diffusion of the
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Fig. 1. Experimental set-up.

infra-red SPDC by the silicon sensor of the CCD camera.
Therefore, the present experiments are designed in order
to generate green light SPDC, at a wavelength where a sci-
entific CCD camera has a good quantum efficiency and,
even more importantly, a sharp transfer function of spatial
frequencies. Moreover, the reduction of the pulse duration
ensures single mode SPDC in the temporal domain. The
paper is organized as follows. Section 2 describes the ex-
perimental set-up. Section 3 presents the method we have
used to calculate a degeneracy factor that takes into ac-
count both spatial and temporal modes. In Section 4, we
give our experimental results and compare them to spatio-
temporal numerical simulations in Section 5. Finally some
conclusions and perspectives are summarized in Section 6.

2 Experimental set-up

The experimental set-up is sketched in Figure 1. The
pump pulses of 930 fs duration (FWHM), with a time-
bandwidth product lower than 0.6, are generated by a
frequency-quadrupled Q-switched mode-locked Nd:Glass
laser (Twinkle laser by Light Conversion) [10] at a rep-
etition rate of 33 Hz and at a wavelength of 263.75 nm.
The collimated pump beam illuminates a 2 mm long BBO
crystal and a dichroic mirror separates the UV light from
the SPDC beam after the crystal. Because of type I phase
matching conditions, the SPDC is generated on a tempo-
ral spectrum with a bandwidth of several tens of nanome-
ters [11]. However a narrow interferential filter centered
at the parametric degeneracy (∆λ = 0.4 nm at 527.5 nm,
transmission coefficient of 60%) is placed before the cam-
era, in order to select an unique temporal mode. This
point is critical and we will further discuss in Sections 3
and 5 the number of modes that have to be taken into
account. The SPDC pattern is recorded in the far-field on

a single-shot, back-illuminated CCD camera from Roper-
scientific [12], cooled at −40 ◦C with a lateral pixel size
of 20 µm, a quantum efficiency close to 85% (@527.5 nm),
a dark current of 0.03 e−/pix/s and a read-out noise
around 3.4 e−rms.

3 Estimation of the degeneracy factor

The probability of counting n photo-electrons on a pixel
of the camera is given by [13]:

P(n;n,M) =
Γ (n + M)

Γ (n + 1)Γ (M)
(1+M/n)−n(1+n/M)−M (2)

where Γ (ξ) is the gamma function of argument ξ, and M is
the degeneracy factor. This factor, ideally equal to one
for an infinitely small pixel and a SPDC beam generated
in an unique temporal mode, must take into account the
unavoidable departures in the real experiment:

– first, even for a short crystal (2 mm) the dispersion re-
sults in a temporal shift between the SPDC generated
at the crystal input and the SPDC generated near the
crystal output. This shift leads to a stretching of the
SPDC pulse, that cannot be strictly temporally sin-
gle mode, even if the inverse of the bandwidth of the
interferential filter is much greater than the duration
of the SPDC pulse. Hence a temporal degeneracy fac-
tor Mt slightly greater than one must be taken into
account;

– second, even if the lateral pixel size is much smaller
than the lateral size of a coherence cell in the SPDC
beam, the pixels perform some integration between ad-
jacent coherence cells. This phenomenon, spatial anal-
ogous of the temporal integration described in [5], has
been precisely quantified for classical speckles [14].
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The corresponding spatial degeneracy factor Mp is
given for square pixels by:

Mp =

{√
Sc

Sp
erf

(√
πSp

Sc

)
−
(

Sc

πSp

)

×
[
1 − exp

(
−πSp

Sc

)]}−2

(3)

where “erf” represents the error function, Sp is the
pixel area and Sc is the coherence area in the far field,
proportional to the area of the Fourier transform of the
envelope of the SPDC beam recorded at the output
face of the crystal. In our experiment, the estimated
value of this coherence area is 3.8 pixel areas. This
value is obtained by applying the laws of Fourier optics
to an experimental image of the Gaussian beam at the
crystal output face. With this value, equation (3) gives
Mp = 1.3;

– finally, we assume that the global degeneracy factor M
can be simply estimated as the product of the spatial
and the temporal factors:

M = MtMp. (4)

We will show in the following that the temporal Mt factor
deduced from the experimental results is in good agree-
ment with spatio-temporal simulations of SPDC.

4 Experimental results

Figure 2 shows an example of a SPDC pattern recorded
in the far-field. As in our previous papers [8,9], random
fluctuations due to the amplification of quantum noise are
clearly visible, with a mean area of the order of the coher-
ence cell area. Unlike in our previous papers, the contrast
in Figure 2 is close to one and we show in the follow-
ing that pixels do exhibit the expected statistics of single
mode SPDC. An other important point is the strong cor-
relation between opposite pixels, clearly visible in Figure 2
and already described in references [8,9]. Theory predicts
that the statistics on the difference between opposite pix-
els is sub-Poissonian [15]. Moreover, recent numerical sim-
ulations confirm the sub-Poissonian character for realistic
situations like Gaussian pump profile [16,17]. However, a
quantitative analysis shows that the difference between
opposite pixels does not exhibit the sub-shot noise statis-
tics. The reasons are not entirely clear but could reside in
some spatial distortions due to the imaging system, espe-
cially the interferential filter. To compare the experimen-
tal statistics to the theoretical Bose-Einstein distribution,
we recorded ten SPDC patterns in the same experimental
conditions. The optical axis on each image was determined
by using with an appropriate algorithm [18] the symmet-
rical properties resulting from the signal-idler correlation.
By performing the average of all pixels of all images on
circles of different diameters, we first verified that phase
matching conditions correspond to low-pass filtering and

Fig. 2. Far field SPDC pattern recorded on one laser shot.
Axes are graduated in pixels. The right scale gives the corre-
spondence between grey-levels and photo-counts.

then selected the pixels inside the drew white circle in Fig-
ure 2, for which the statistics appeared to be stationary,
i.e. with a negligible gain variation compared to random
fluctuations. The radius of the selected area is 70 pixels.
The number of independent coherent cells in this area can
be assessed as the ratio between the total area and the
coherence area, divided by two because of the signal-idler
correlation. The result is 2×103 independent cells. To de-
duce the global degeneracy factor M from equation (1) on
each image, we must subtract the read-out noise of the
camera from the experimental variance:

M = n2/
(
(∆n)2 − n − (∆r)2

)
(5)

where (∆r)2 is the variance of the read-out noise, calcu-
lated in a small part of the image near the edges, where
the incident light is negligible. We find on the ten recorded
images an average intensity of n = 12.9 pe−/pix. The de-
generacy factor M obtained by averaging the factors cal-
culated on each image is 1.79 with a standard deviation of
∆M = 0.17. By dividing (see Eq. (4)) this number by the
estimated spatial degeneracy factor Mp = 1.3 (see Sect. 2),
we obtain an estimation of the number of temporal modes
of the SPDC beam, Mt = 1.38. Figure 3 shows the his-
togram of the pixels on one image and the theoretical
curves corresponding either to a Poissonian or to a Bose-
Einstein distribution, calculated with the parameters M
and n measured on this image. For both theoretical curves,
the read-out noise was taken into account by a convolu-
tion with a Gaussian distribution. Hence, the distribution
of experimental data, including negative intensities due
to the subtraction of the average electronic background,
is well reproduced by the Bose-Einstein theoretical curve
and appears to be very different from a Poissonian distri-
bution. Results with other images are similar. Note how-
ever a non negligible difference between the mean degen-
eracy factors obtained either by averaging the degeneracy
factors of each image (M = 1.79) or from the histogram
of the pixels of all images (M = 1.62). A probable cause
of this discrepancy is the shot to shot fluctuations of the
pump intensity. Indeed, the average of the image strongly
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Fig. 3. Histogram of the experimental pixels from one image.
Solid line: Bose-Einstein distribution, with the degeneracy fac-
tor M = 1.73 and the mean n = 12.5 pe−/pix calculated on
this image. Dashed line: Poissonian distribution with the same
mean.

varies from one shot to another, more than expected for
purely random fluctuations of a Bose-Einstein distribution
with constant parameters.

5 Numerical simulations

We have recently extended our semiclassical simulation of
SPDC by adding one temporal dimension to the 2D spa-
tial model of reference [9]. The complete description of this
simulation will be published elsewhere [19]. To study the
temporal walk-off effect, we performed numerical simula-
tions for different crystal lengths and verified that the con-
trast decreases when increasing the crystal length. Indeed,
for long crystals, the SPDC generated at the beginning of
the crystal is temporally shifted, because of dispersion,
with respect to the pump pulse near the crystal output
face. Hence, the SPDC generated near the output face is
almost not correlated with the earlier generated paramet-
ric fluorescence and the global SPDC is not temporally
single mode. Next we studied the impact of the gain level
on the number of temporal modes for a 2 mm long crystal.
Results are given in Table 1. Because the global experi-
mental quantum efficiency of the imaging system formed
by the detector, the interferential filter and the lens is es-
timated to be 0.51, the results in photo-electrons are ob-
tained as follows. First, the spatio-temporal simulation of
SPDC provides an intensity, that is converted in photons
after temporal and spatial integration on a pixel. Then,
these photons are randomly destroyed, with a probability
of 0.49, in order to conserve a Poissonian noise for the
retrieved photo-electrons (a simple multiplication would
give a wrong sub-Poissonian statistics). Finally the num-
ber of temporal modes is calculated using equation (5),
with no read-out noise.

An interpolation of Table 1 leads to Mt ≈ 1.43 for
the experimental mean n = 12.9 pe−/pix. This result is

Fig. 4. Histogram of the numerical simulation with n =
12.2 pe−/pix and corresponding theoretical curve.

Table 1. Evolution of the Mt factor according to average in-
tensity of SPDC in pe−/pix.

n 9.9 12.2 14.9 18.2 22 1.2 × 108

Mt 1.50 1.44 1.42 1.37 1.36 1.10

in good agreement with the number of temporal modes
estimated from the experimental images (Mt = 1.38). We
verify also that for a very high gain (n = 1.2×108 pe−/pix)
the number of temporal modes becomes close to one. The
estimation of the global quantum efficiency of the imag-
ing system appears to be among the main sources of un-
certainties. Figure 4 presents the histogram of the pix-
els issued from the simulation that gives a mean number
n = 12.2 pe−/pix, giving Mt = 1.44. The corresponding
theoretical curve is also drew in the figure. The horizon-
tal scale starts exactly from zero because electronic back-
ground corrections are not necessary in numerical simula-
tions. Note also that there is no influence of the pixel area
(Mp factor = 1), because quantum noise is itself simulated
pixel by pixel. For higher gains, the Mt factor decreases,
as shown in Table 1. Indeed, the SPDC beam becomes
temporally very narrow, because of exponential amplifi-
cation, while the frequency bandwidth remains fixed by
the interferential filter.

6 Conclusion

We have experimentally demonstrated that spatial fluctu-
ations of spontaneous down conversion obey an almost
non degenerate Bose-Einstein statistics, for sufficiently
small pixels and short pulses. The considered fluctuations
are purely spatial because all statistical quantities (vari-
ance, degeneracy factor...) are computed on one image,
and not from the fluctuations between different shots.
Moreover, we observed strong correlations between op-
posite points corresponding to signal-idler entanglement.
However, the quantitative values remained in the classical
domain while theory predicts sub-shot-noise correlation.
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While experiments in Como (group of prof. Di Trapani)
are designed to demonstrate this sub shot-noise correla-
tion in a type 2 configuration [20], the present experiment
should, in principle, lead to the result for a type 1 crystal,
after the solution of some not completely clear experimen-
tal problems.

This work has been supported by the European Union in the
frame of the QUANTIM network (contract IST 2000-26019).
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